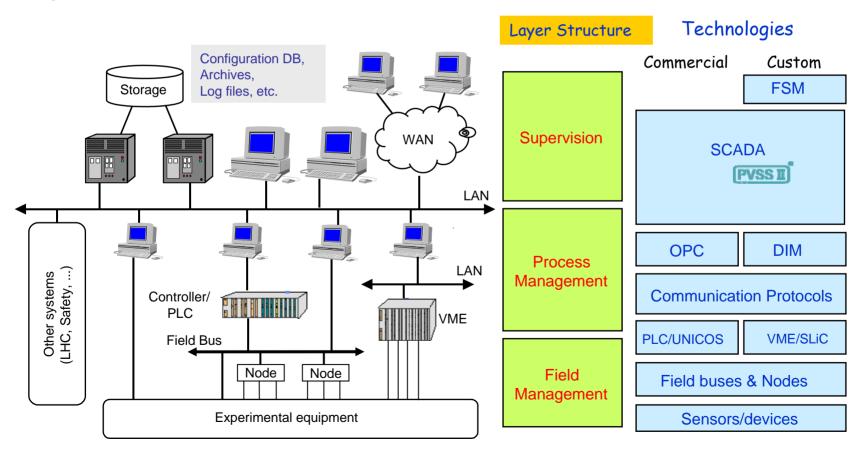
Detector Control Systems


A software implementation: Cern Framework + PVSS

Niccolo' Moggi and Stefano Zucchelli University and INFN Bologna

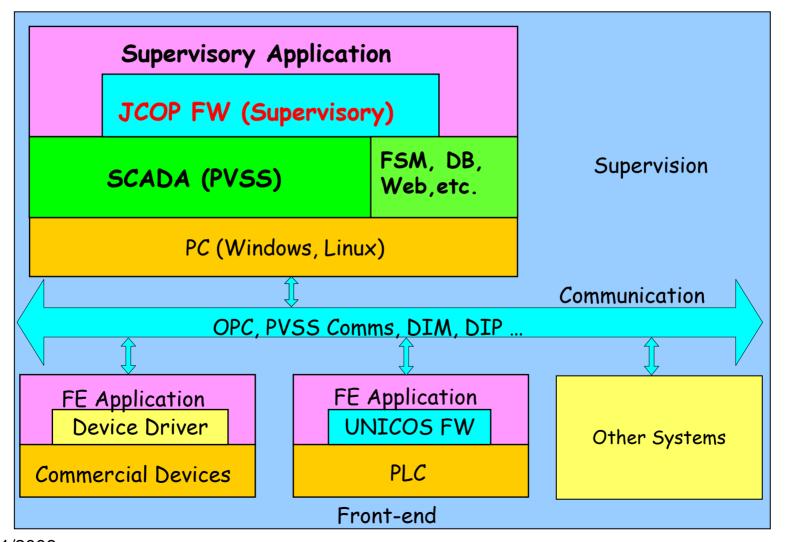
Hardware and Software

Logically any DCS has a 3 layers hardware structure:

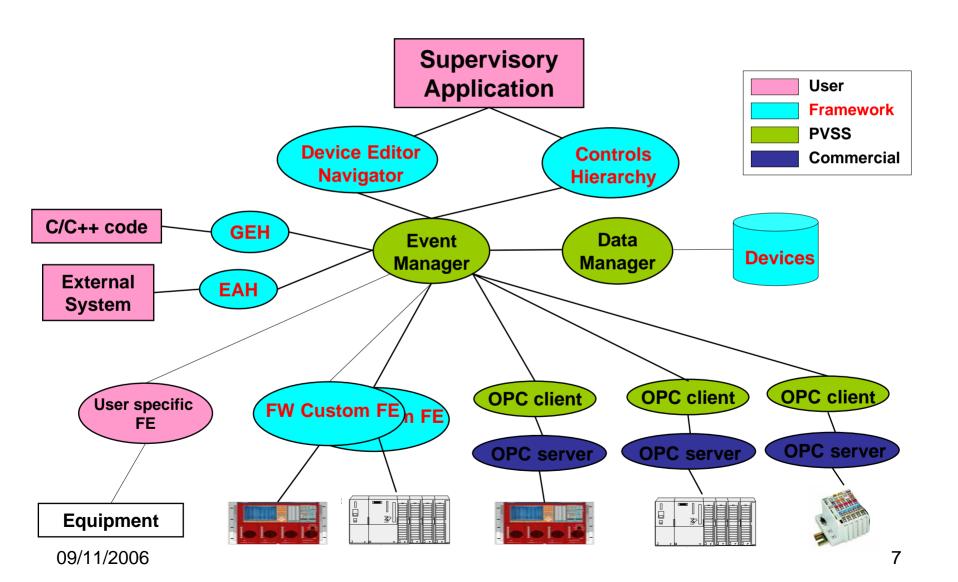
supervision -> control -> field

Requirements: architecture

- Client/Server architecture with hardware abstraction layers
 - Servers execute tasks and provide data independently of the clients
- Hierarchical mechanism (tree structure)
 - FSM (finite state machines): "nodes" with 1 parent and many children
 - > easy partitioning
 - distributable system, possible decentralized decision making and error recovery


Requirements: implementation

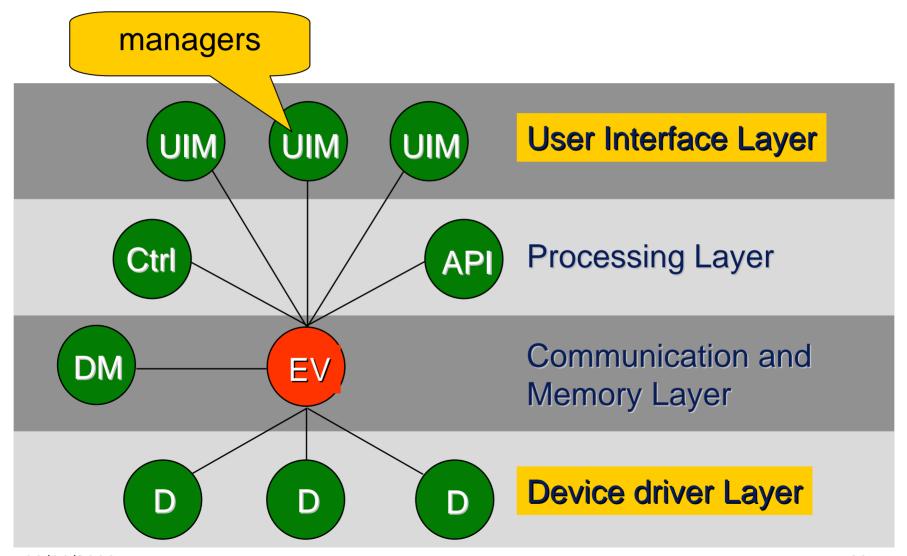
- reliability
- flexibility, expandability
- low cost
- short development time
- ease of use (developers and users)
- documentation/support


CERN choice: JCOP + PVSS

- What it is PVSS:
 - Commercial software by ETM (Austrian company)
 - SCADA (supervisory control and data acquisition)
 - Run-time DB, archiving, logging, trending
 - Alarm generation and handling
 - Device access (OPC/DIM, drivers) and control
 - User data processing (C-style scripting language)
 - Graphical editor for user interface
- What is JCOP (Joint COntrol Project)
 - CERN developed a <u>framework for PVSS</u>
 - Simple interface to PVSS
 - Implements hierarchy (FSM)
 - Provides drivers for most common HEP devices
 - Many utilities (eg: graphics)

JCOP + PVSS

JCOP + PVSS


JCOP features

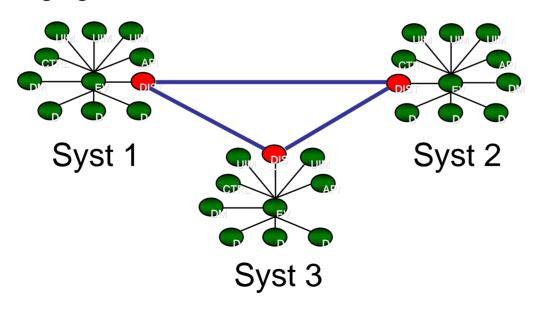
- Provides a complete component set for:
 - CAEN HV power supplies
 - Wiener crates and LV power supplies
 - Other power supplies (ISEG, ELMB)
 - Generic devices to connect analog or digital I/Os
- "complete" means:
 - any necessary OPC/DIM servers;
 - Device modeling (mapping of PVSS data-points to device values)
 - scripts, libraries and panels to configure and operate the device.
- Other tools to integrate user's devices

PVSS II features

- Distributed architecture: several processes for different tasks ("managers") run separately and communicate internally via TCP/IP
- Managers subscribe to data ("subscribe on change" mode)
- Event manager is the heart of the system
- Device oriented (abstraction of complex devices)
- Devices are modeled using "Data-Points":
 - All data relative to a device is grouped together and may be reached hierarchically in C++ style (eg: crate.board.channel.vMon)

PVSS II system architecture

PVSS: how it was chosen

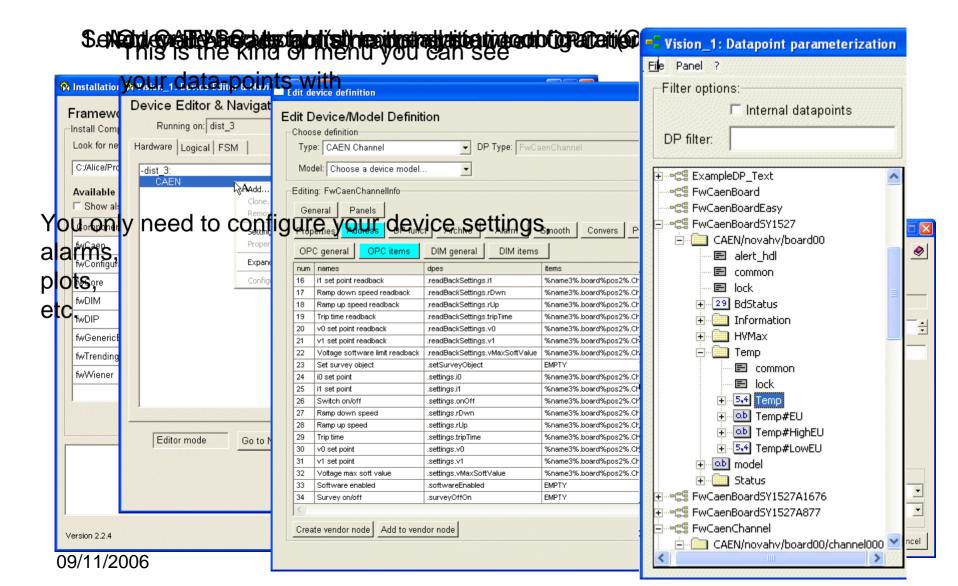

- CERN chose PVSS in 1999 among >40 products based on a set of "objective" <u>criteria</u>:
 - Scalability
 - Cross-platform
 - Archiving and trending ability
 - Remote access
 - Security
 - Alarm handling
 - Extensibility and ease of use
- It's been a long evaluation process (lots of tests)
- Much development has been done since then

JCOP+PVSS advantages

- Scalability: practically no limits (see next page)
- Stability of kernel
- Flexibility (customization, easy integration of user functions)
- Win AND Linux (not OR)
 - managers of the same system may run on different platforms
 - may develop on one platform and run on the other
 - only limitation: OPC client/server must run on Win
- By now is tried and tested (Compass, Harp, NA60, all 4 LHC)
- HV and LV are "Plug and Play" (drivers and modeling)
- Easy partitioning (commissioning and calibrations)
- Documentation (cern site, not ETM)
- Easy remote access on the Web through a web server
 - user's GUI get downloaded by the remote browser
 - claim to support any security option (well...)
- Very flexible alarm handling scheme
- DB: proprietary or Oracle
- Redundancy (double system with automatic switchover)
- Some nice safety features if system is overloaded

(follows) Scalability

- (Cern is) not aware of any built-in limit
 - As many managers as needed (all communications handled automatically)
 - Scattered system (one system running on many computers)
 - Distributed systems: multiple systems connected together and exchanging data



Dis-advantages

COST !!!

- have no idea: should investigate with ETM (koller@etm.at)
- complex licensing model: usually possible to negotiate special deals
- Maybe even too "big"?
- Still need to develop part of the device drivers (but this is unavoidable)
- Support by ETM in the US?
- Cern will not commit to any formal support but "this does not mean we will not help you if we could" (Wayne.Salter@cern.ch)

Example: CAEN HV

Performance

- Report tests made at Cern in 2003/6
 - Distributed 16-system in 3-level tree on 16 PC of various type, each system with ~40K DPE
 - Tested up to 260K DPE on one PC (non-realistic test
 5M DPE on top PC of a 130-system in 5-level tree)
 - Total # of DPE not significant in subscribe-on-change mode. What overload a system is the # of changes/s
 - P4 CPU:2.4GHz RAM:2Gb running EM + DM + 5 managers
 - saturate CPU at 1600 changes/s (500 ch/s = 35%CPU)
 - when moving EM outside saturates CPU at 2800 changes/s
 - alarm handling and archiving: saturate at ~700 alarms/s
 - Dual-CPU and large RAM are well exploited
 - With 400K DPE (includes FEB)
 - 1% changes/s: 1+2 CPU tree
 - 5% changes/s: 1+10 CPU tree

Other possibilities

- EPICS: see Andrew Norman presentation
- iFix (by Intellution):
 - Commercial
 - Slow (see CDF experience)
 - Fragile connections between nodes
 - No drivers included
 - Windows only
 - Limit 100,000 channels?
- LabView:
 - No large systems
- A lot of other commercial software out there, but should be tested...